![]() 半導体を素材とする分析対象物センサー及び方法
专利摘要:
半導体材料を含む基板を含む分析対象物センサーを供給する。実施形態は、導電性の材料の芯と半導体材料のクラッディングとを含むことができ、クラッディングは、分析対象物センサーの作動電極の為の導電パスの少なくとも一部を形成し得る。多数の他の態様と同様に、分析対象物センサーの製造および使用方法が記載される。 公开号:JP2011511665A 申请号:JP2010545956 申请日:2009-02-03 公开日:2011-04-14 发明作者:ウー,ムゥ;ギフォード,リアン;サン,スティーブ;フェイ,ジャンフェン;ペトゥー,シェルバン 申请人:バイエル・ヘルスケア・エルエルシーBayer HealthCare LLC; IPC主号:A61B5-1473
专利说明:
[0001] 本出願は、全ての目的において、参考として、その全てが本明細書に組み込まれる、2008年2月4日出願の発明の名称「半導体を素材とする分析対象物センサー」米国仮特許出願61/026,081号(代理人処理番号BHDD−001/L)に基づく優先権を主張する。] [0002] [発明の分野] 本発明は分析対象物の検出に関し、特に、分析対象物を検出するのに用いるセンサーに関する。] 背景技術 [0003] 分析対象物のレベルを測定することは、例えば糖尿病の管理の様な、多くの種類の健康上の診断に重要な部分である。かかる測定は、体外又は体内で患者から採取したサンプルの分析対象物濃度レベルを検出するためのセンサーの使用を伴うことが一般的である。分析対象物センサーは様々な方式で機能することが可能で、サンプル中の分析対象物濃度に対応する電流を作動電極で発生させる電流測定方式を含む。] [0004] 例えば患者から採取した単数のサンプル(例:ピンの一刺し又は針)中の分析対象物濃度レベルの検出のように、分析対象物センサーを非連続的に用いることもあるし、又はセンサーを患者に数日間かそれ以上の期間埋め込むことによって連続的に用いることもある。連続測定は非連続測定でしばしば検出されないある種の健康状態を検出する潜在的な利点を提供し、また必要な状況に対応した即座の治療により閉回路制御を形成する可能性を提供する。例えば、グルコースレベルを検出する為に採用された分析対象物センサーを使って低血糖症を連続測定している糖尿病患者に必要であれば即座にインシュリンを与えることができる。] [0005] 従来の連続測定用分析対象物センサーは、製造上の目的又は連続測定への適用には不利な機械的性質をもつ可能性のある複数の基板(例えば、タンタル)から成型されることが一般的である。例えばタンタル基板の引張強さが低い為タンタルセンサーを小さな寸法(例えば、直径350ミクロン以下)に加工することが困難であり、従って、従来の基板を用いて挿入及び/又は埋め込み中に痛み及び/又は不快感を防止するに充分に小さいセンサーを加工することが困難であろう。] [0006] なおかつタンタル基板は水素に曝されると脆化されやすい。例えば分析対象物センサーの基板にタンタルを用いる場合、作動電極領域で電流を発生する化学反応物と下部に横たわるタンタル基板の直接接触を避ける為に、白金又は陽極物質でセンサー作動電極領域を完全に覆う配慮をする必要がある。白金や類似の物質は高価なため、これらの対策は従来の分析対象物センサーの費用をかなり増加させる。] [0007] 従って、体外と体内での両方の使用に採用するのに適当な高強度の機械的特性と電気的特性をもった分析対象物センサーを提供することは有益である。] [0008] 本発明のひとつの態様として、分析対象物センサーの作動電極のために少なくとも部分的な導電パスを形成する半導体材料を含む基板を含む分析対象物センサーを提供する。] [0009] 本発明のその他の態様として、導電性の材料からなる芯を持つ基板と、分析対象物センサーの作動電極のために少なくとも部分的な導電パスを形成する半導体材料からなるクラッディングとを含む分析対象物センサーを提供する。] [0010] 本発明のその他の態様として、導電性材料で構成された芯を含む基板と、半導体材料で構成されたクラッディングとを含み、そのクラッディングが作動電極のために少なくとも部分的な導電パスを形成し、そのクラッディングが少なくとも1,000MPaの引張強さを有するような分析対象物センサーを提供する。] [0011] 本発明のその他の態様として、半導体材料を含む基板を含み、体液の環境に曝されるように採用された基板上に位置する活性な領域を含み、その活性な領域は体液の環境内の分析対象物を電流を発生させる可能性がある生成物に変換するような物質を含むような分析対象物センサーを提供する。] [0012] 本発明の方法の態様として、分析対象物センサーを製造する方法を提供する。この方法は半導体材料を含む基板を提供することと、その基板の少なくとも一部に電気化学的に活性な層を施すことを含む。] [0013] 本発明の方法の別態様として、分析対象物センサーを使用する方法を提供する。分析対象物センサーを使用する方法は、半導体材料を含む基板を有する分析対象物センサーを提供することと、使用者の体内に少なくとも分析対象物センサーの一部を挿入することを含む。] [0014] 本発明の他の特徴と態様は、下記の詳細説明、付属する請求範囲及び付帯する図面によってさらに完全に明白となる。] 図面の簡単な説明 [0015] 本発明に係る実施形態による例示的な分析対象物センサーの斜視図である。 本発明に係る実施形態による例示的な分析対象物センサーの活性領域の拡大された部分的な断面図である。 本発明に係る別の実施形態による例示的な分析対象物センサーの活性領域の拡大された部分的な断面図である。 本発明に係る別の実施形態による例示的な分析対象物センサーの複数の活性領域の拡大された部分的な断面図である。] 実施例 [0016] 本発明に従って、半導体材料を含む基板を有する分析対象物センサーを提供する。いくつかの実施形態においては、基板は導電性材料を含む芯と、半導体材料を含むクラッディングとを含むことができる。いくつかの実施形態においては、芯の導電性材料は炭素(例:黒鉛)で構成され、半導体材料は炭化珪素で構成されることができる。他の芯及び/又はクラッディング材料を使用することができる。半導体材料(例:クラッディング)は分析対象物センサーの一個又は複数の作動電極のための導電パスを形成することができる。いくつかの実施形態においては、クラッディングは分析対象物センサーの少なくとも部分的な作動電極を形成することができる。] [0017] 分析対象物センサーは例えばグルタメート及び/又はラクテートやその他の分析対象物のような複数の分析対象物(診断又はそうでないもの)を検出するために使用することができることを意図しているにもかかわらず、ひとつ又はいくつかの実施形態においては、触媒薬品のような適切な薬品を含めることによってあるひとつの分析対象物レベル(例:グルコースレベル)を検出するために本発明の分析対象物センサーを適用することができる。分析対象物センサーは連続的な分析対象物測定のために患者の体内に埋め込むことができるし、そうでなければ体外又は体内試験において非連続的に適用することができる。更に下記にて説明するように、本発明の分析対象物センサーには、大きさ、柔軟性、機械的強度、費用削減及び/又は電気化学的安定性の観点から従来の分析対象物センサーの基板に較べて優位性を提供する基板を採用している。ひとつ又はいくつかの実施形態においては、本発明の分析対象物センサーは充分小さいのでトロカールを使用することなく患者に挿入することができる。トロカールは多くは三面の先端がとがった中空の円筒で、器具を血管又は体腔に導入するために使用される。] [0018] 図1は本発明によって提供される分析対象物センサー100の例示的な実施形態の斜視図である。センサー100は半導体材料にて構成されるクラッディング106にて囲まれた導電性芯104を伴った基板102を含む。図1のセンサー100は円筒形として示されている。しかし、中心の導電芯層が被覆されるかそうでなければ1個又はそれ以上の半導体層で囲まれた平面状の帯のように、分析対象物センサー100は別の形状に成型することができる。芯104とクラッディング106は共に電流を流すことができる。] 図1 [0019] いくつかの実施形態においては、基板は繊維状の形態をとることができる。いくつかの実施形態においては、芯104は炭素(例:黒鉛)で構成することができ、クラッディング106はSiC繊維の形状で炭化珪素(SiC)で構成することができる。例えば、かかる繊維の長さはその幅より長くすることができ、芯104とクラッディング106は共に円筒形状をとることができる。適切なSiC繊維は、例えばLowell,MassachusettsのSpecialty Materials Inc.で製造される。しかしながら、芯104の導電性材料は銅又は白金のような金属や、導電性ポリマー、炭素ナノチューブを埋め込んだポリマー等を含む他の材料で構成することができ、かつクラッディング106は数ある中で珪素やゲルマニウムのようなIV族元素、シリコンゲルマニュウム(SiGe)のようなIV族化合物、ガリウム砒素(GaAs)や燐化インジューム(InP)のようなIII−V族化合物を含む他の半導体材料で構成することができる。いくつかの実施形態においては、基板102の長さ(L1)は約2.5mmから100mm、約5mmから100mm又は約10mmから100mmまでとることができ、約50mmが望ましい。基板102の直径(D1)は、約500ミクロン以下、約250ミクロン以下、いくつかの実施形態においては約150ミクロン以下さえもとることができる。かかる直径(D1)は別の寸法をとることもできるが、約50ミクロンから500ミクロン、約50ミクロンから250ミクロン、約50ミクロンから150ミクロンの範囲をとることができ、又は約75ミクロンから150ミクロンさえもの範囲をとることができる。ひとつ又はそれ以上の実施形態においては、芯104とクラッディング106は絶縁層(図示されていない)を介在してお互いに電気的に絶縁することができる。芯104とクラッディング106は生体適合性があり得る。] [0020] 分析対象物センサー100は基板102に沿ってひとつかそれ以上の領域を被覆しないまま残して、基板102の大部分を被覆するような保護層108を含むことができる。いくつかの実施形態においては、センサー100の被覆後の総直径が約250ミクロン以下、約60から250ミクロン、約85から250ミクロン又は約95から250ミクロンにさえなるように、かかる保護層で分析対象物センサー100の幅を約10から100ミクロン又は約20から100ミクロンにまでさえ増加させることができる。従来の針の直径(サイズ)より小さい、かかる直径レベルでは、このセンサー100は侵襲性が最小限で柔軟性があるため、挿入又は埋め込みの際にほとんど痛みや不快感を生じさせない。発明の分析対象物センサー100の直径は比較的小さいため、大型の従来の手段では通常埋め込み部位とは考えられない腕や大腿部をはじめとする体の部位に埋め込みをすることが可能になる。この保護層108はシリコンゴム、ポリイミド、ポリテトラフルオロエチレン(登録商標Teflon)、ポリエチレン又は他の適切な生体適合性の誘電体のような絶縁体で構成することができる。かかる保護層108は浸液法、噴霧法又は他の適切な適用方法にて供給することができる。] [0021] かかる保護層108で被覆されない領域(群)(図1に一領域のみ示す)は分析対象物レベルを示す体液環境に曝すために採用された活性領域110を形成することができる。この目的を達成するために、活性領域110は、分析対象物センサー100が曝されている環境の中にある分析対象物に由来するひとつ又はそれ以上の化学生成物に電気化学的に感受性のある電気化学的に活性な作動電極(図1には明確に示されていない)を含むことができる。かかる作動電極は(更に下記で説明するように)分析対象物濃度レベルに対応する電気信号を発生させるために採用される。活性領域110はさまざまな形状および寸法に形成することができる。少なくともひとつの実施形態においては(に示されるように)、活性領域は環状の表面を形成し、その長さ(L2)は約0.2から10mmでかつ基板102の周囲全体に延長することができる。他の長さも採用できる。] 図1 [0022] ひとつ又はそれ以上の実施形態において、対極としても機能し、電流の戻りパスを提供する参照電極112は保護層108の上に配置でき、又保護層108の中に形成することができる。上述された実施形態において、保護層108はクラッディング106と参照電極112の間の電気的絶縁層として機能する基底層108aを含むことができ、かつ参照電極112を被覆するためにひとつかそれ以上の被覆又は追加の絶縁層108bを含むことができる。いくつかの実施形態においては、参照電極112は一般的な技術で使用されるように、銀/塩化銀コイル、鞘、スパッター被覆と/又はフォトリソグラフィーで輪郭をとった被覆で構成されることができる。参照電極112には、他の材料及び形態を採用することができる。] [0023] 分析対象物センサー100は、参照電極112が安定した参照電位を提供し、活性領域110中の作動電極にて電気化学反応によって発生する電流が参照電極によって測定装置(示されていない)に伝達されるような電流測定センサーとして機能することができる。かかる電流は作動電極における電気化学的活性度の指標として用いられることができる。しかしながらここで注目すべきことは、本発明の分析対象物センサー100は電流よりも(又は追加して)電圧、コンダクタンス、キャパシタンス、かつ/又はインピーダンスのような他のパラメーターが直接測定できるという他のモードで使用できることである。] [0024] 更に後述するように、活性領域110は、分析対象物に電気化学反応をおこしたり、さもなければ作動電極にて電流を発生させるような生成物に変換することを促進する触媒のようなひとつかそれ以上の薬品を含むことができる。ひとつの利用価値のある触媒グループは、例えばグルコース酸化酵素(グルコースを変換する)、乳酸塩酸化酵素(乳酸塩を変換する)、D−アスパラギン酸塩酸化酵素(D−アスパラギン酸塩とD−グルタミン酸塩を変換する)を含む酸化酵素類である。本発明に用いることができるさらに詳細な酸化酵素の一覧表は、全ての目的において、参考として、その全てが本明細書に組み込まれるClark Jr.による米国特許4,721,677号発明の名称「埋め込み可能な気体を含むバイオセンサー及び測定方法及びグルコースのような分析対象物」によって供給される。酸化酵素以外の薬品と触媒酵素も使用可能である。] [0025] グルコースが関心ある分析対象物であるような実施形態において、活性領域110内にグルコース酸化酵素を含むことが可能である。酸素存在下のグルコースとこの酵素の反応は過酸化酸素を発生し、活性領域110内の作動電極にて電気化学反応をおこし、クラッディング106と/又は芯104を通して伝達される電流を発生する。グルコース脱水素酵素が使われた場合は、電極への電子の移動が促進される。この方法で、活性領域110内の作動電極での電気的活性度は、分析対象物センサー100が曝されている環境内のグルコース濃度の指標を供給することができる。] [0026] いくつかの実施形態においては、分析対象物センサー100の基板102には有利な機械的特性があるため、分析対象物センサー100を小さな直径(例:約500ミクロン又はそれ以下、約250ミクロン又はそれ以下、約150ミクロン又はそれ以下、又は約100ミクロン又はそれ以下までにも)に組み立てることができる。SiCクラッディング106を用いる実施形態においては、SiCの引張強さが高く、3,000MPa、あるいは3,200MPa超え(例:約3,450MPaから5,865MPa)にもなるため、基板102を上記の如く小さく組み立てたり機械加工することができる。他の半導体では別の引張強さ(望ましくは約1,000MPa超え、約2,000MPa超え又は約3,000MPa超えさえ)のもの、又は少なくとも3,200MPaさえをももつものが使用できる。かかる減少された直径レベルにおいては、基板102は、曲げ又は変形への充分な柔軟性を与える中程度のモデュラス(modulus)を有し、またリコイルを可能にするに充分な高い降伏応力、また挿入の間や分析対象物センサー100を連続測定を目的に患者に装着させている間の曲げ又は捻りによる破壊を防止する中程度から高い極限強さを有することができる。これらの特性のため、本発明の分析対象物センサー100は容易に埋め込み(カテーテル又は他の埋め込み道具を必要とせず)ができ、かつ埋め込み組織と共に動き、埋め込み組織に適合させることができるに充分に柔軟であるため、組織の損傷を最小化できる。] [0027] 埋め込みをさらに容易にするために、ひとつ又はそれ以上の実施形態においては、ランセットを形成するために、分析対象物センサー100の前方端114をある角度に裂き、又は鋭利な尖頭に形成することができるので、分析対象物センサー100を皮膚の下に挿入かつ/又は埋め込むことが容易になる。それに加えて、いくつかの実施形態においては、半導体クラッディング106は非毒性で、生体適合性(例:血液適合性)で、かつ血小板の癒着や凝固や包嚢形成に耐性があり得る。それらの特性のゆえに、本発明で供給される析対象物センサー100は比較的長期間にわたって埋め込みが可能であり得る。例えば、短期間の使用が予想される場合には分析対象物センサー100は約3から7日間の埋め込みが可能で、かつそれより長期間の使用の場合にはかかるセンサー100は約1週間かそれ以上の埋め込みが可能である。] [0028] 図2は本発明による分析対象物センサー100のひとつの例示的な実施形態における活性領域110の拡大された断面図である。示されるように、かかる活性領域はクラッディング106の長手方向の部分を含み、上述の実施形態において、かかるセンサー100の作動電極200を形成する。活性領域110内に在るひとつかもしくはそれ以上の触媒(下述される)は、分析対象物の作動電極200にて電気化学反応に供される生成物への変換を促進し得る。クラッディング106の半導体材料は、分析対象物の触媒反応の生成物に関してある一定程度に電気化学的に活性であり得る。例えば、活性領域100において、ひとつか又はそれ以上の触媒(例:酸化酵素)は分析対象物と反応して過酸化水素とひとつか又はそれ以上の副産物を発生させ得る。その際、過酸化水素の電気化学反応によって、クラッディング106の半導体材料の中で測定可能な電流が発生し得る。例えば、いくつかの実施形態において、SiCがクラッディングの材料として用いられるとき約0.01から20ナノアンペア(nA)、又は0.1から20ナノアンペア(nA)までもの電流がこの反応で発生し得るということを、本発明の発明者は発見した。使用される測定機器の正確さと精度にもよるが、かかる電流レベルは分析対象物の濃度レベルの測定へのいくつかの適用には充分であり得る。しかしながら、クラッディング106にて別の反応と事象で電流が発生することもあり得るので、信号対雑音比がある許容されるレベルに維持されるような保証をする配慮をすべきである。] 図2 [0029] 上記の如く、特にグルコースが検出されることを可能にするひとつの化学(触媒)反応は: 酸化酵素 (1)分析対象物+酸素-----------------a過酸化水素+副産物 ここで、触媒(酸化酵素)は分析対象物を、同じく反応の検出可能な副産物として生成した過酸化水素を伴う副産物(例:ある酸)に変換することを促進している。] [0030] 式(1)で認識されるように、この反応は検出可能な生成物を生むために酸素の存在を必要とする。分析対象物センサー100が設置されるいくつかの体液環境(例:間質性体液、血漿など)においては、酸素の供給が分析対象物に比して不足する可能性がある。この不足は検出可能な生成物が由来する触媒反応を制限する可能性があり、その結果分析対象物濃度レベルの測定が不正確になる可能性がある。この問題を克服するためにさまざまな技術が用いられてきたが、そのいくつかは、分析対象物よりも比較的より酸素に透過的で、それによって分析対象物濃度につりあう酸素レベルの維持を推進するような差別的又は選択的な浸透層又は膜(「選択的浸透層」)を採用している。] [0031] 再度図2に言及すると、反応(1)の検出可能な生成物が作動電極に到達して、測定しようとする分析対象物濃度の正確な表示を可能にせしめるために、活性領域110は、ひとつ又はそれ以上の触媒の存在するところで反応する充分な量の分析対象物、水と酸素を共同して実現する複数の層204、206、208をもつ層状の構造202を含むことができる。例えば、かかる層状の構造202は、浸漬被覆、スパッタリング、噴霧、電気化学的析出、電気化学的重合又は他の適切な方法で堆積された複数の重合体の層で構成することができる。層状の構造202の層204、206、208は、それらの層を活性領域110に限定し、かつ/又は層204、206、208の中で明確な構造を作るために、いくつかの実施形態(例:レーザー剥離又はフォトリソグラフィー)にならって作ることができる。] 図2 [0032] 上述の実施形態において、1番目の選択的浸透層204はクラッディング106の上に直接適用し設置することができる。かかる1番目の選択的浸透層204は、酸素と過酸化水素に関して透過的で、しかし測定を干渉する可能性のある大型の分子(例:尿酸塩、アスコルビン酸塩、アセトアミノフェン等)に関しては比較的非透過的なひとつかそれ以上の材料で作成することができる。それゆえに、1番目の選択的浸透層204は、クラッディング106が体液環境かつ/又は構造202のその他の層206、208からの大型分子に直接曝されることから保護する。1番目の選択的浸透層204は、ひとつかそれ以上の酢酸セルロース、ナフィオン、ポリピロール、アニリン、チラミン、o−アミノフェオーノ、o−フェニレンジアミン等を含むことができる。この層204は、浸漬被覆、スパッタリング、噴霧、電気化学的析出、電気化学的重合による堆積のようなどんな適切な方法でもクラッディング106に適用できる。] [0033] 酸化酵素をはじめとするひとつかそれ以上の触媒を含んでもよい反応性層206は1番目の選択的浸透層204の上部に配置される。測定適用に応じて、触媒又は他の生体認識又は生体に影響する薬品のような別の適切な薬品を用いることができる。例えば、全コレステロール、尿酸、リピド、トリグリセリド、高密度リポ蛋白(HDL)、低密度リポ蛋白(LDL)などの試験のような、分析対象物を検出するための酵素又は試薬を用いることができる。触媒が反応性層206の外へ拡散することを防ぐ為に、様々な技術のいずれかを用いて、かかる薬品(例:触媒)を反応性層206の中に固定することができる。反応性層206の中に触媒を適用し固定する適切な技術は、例えば触媒をゾルゲルのようなポリマー基質の格子につなぐこと、薬品をグルタラルデハイドのような適切な基質に橋かけすること、触媒間に共有結合による配列を形成することを含み得る。いくつかの実施形態においては、反応性層206は1番目の選択的浸透層204と実質的に同一の重合体材料から形成することができる。しかしながら、1番目の選択的浸透層204とは対照的に、分析対象物と触媒の反応をおこすために(反応(1)のような)、分析対象物はある程度反応性層206を透過できなければならない。それゆえに、反応性層206はひとつかそれ以上の、より大型の分子が透過できるような部分を含むことができる。例えば、全ての目的において、参考として、その全てが本明細書に組み込まれる、Goughの米国特許6,721,587号発明の名称「埋め込み可能なセンサーのための膜と電極構造」では、大型分子と酸素が透過的な不連続の親水性領域は触媒を含む層に組み込まれ得るという技術の説明をしている。かかる親水性領域の個数、寸法と形状を調節することによって、反応性層206中での分析対象物の適切な透過率レベルが達成され得る。いくつかの実施形態においては、異なる又は互い違いの電荷、極性、疎水性、親水性などの化学特性を持つ層が互いの上に堆積される反応性層206が、層ごとの堆積技術を用いて形成され得る。かかる層は自己集合された単層を形成することができ、例えばチオール結合を含むことができる。これらの層は、浸漬被覆、スパッタリング、噴霧、電気化学的析出、電気化学的重合又は他の適切な方法を含む多様な手段で形成され得る。] [0034] いくつかの実施形態においては、分析対象物の検出可能生成物への変換を促進するために、活性領域110内に媒介体を含むことができる。媒介体は、触媒と作動電極との間の媒介物として機能するような物質から構成される。例えば、媒介体は、分析対象物の触媒による分解がおこる反応中心と作動電極の間の電子移動を促進することができ、かつこのようにしてこの電極における電気化学的活性度を高めることができる。酵素(酸化酵素、脱水素酵素、融解酵素など)と作動電極との間を媒介する適切な媒介体は、その他の物質に加えて、フェロセンとその誘導体を含む金属複合体、オスミウム複合体、キニーネ、フタロシアニン、有機染料のひとつかそれ以上を含むことができる。ひとつかそれ以上の実施形態においては、媒介体は1番目の選択的浸透層204かつ/又は反応性層206に組み込まれることができる。代替の実施形態においては、かかる媒介体は触媒といっしょに作動電極に直接橋かけされることが可能で、上述の実施形態においては、作動電極は活性領域110内のクラッディング106の一部である。かかる代替の実施形態「結線された電極」においては、触媒が作動電極と連結されているため、別個の反応性層は必要ない可能性があり、かつ、より大型の分子が作動電極の近傍まで透過できるように、1番目の選択的浸透層204の透過性を調整することができる。] [0035] 図2の実施形態に再び言及すると、層状の構造202は反応性層206の上部に適用され位置する2番目の選択的浸透層208をも含むことができる。いくつかの実施形態において、かかる2番目の選択的浸透層208は、グルコース、乳酸塩およびグルタミン酸塩(数あるなかで)を含む様々な分析対象物のようなより大型で極性をもつ分子よりも、酸素のような小型で無極性の分子のほうの透過度がより高い、ポリエチレン、ポリウレタン、ポリプロピレン、ポリテラフルオロエチレン、ブロック共重合体等のような珪素素材又は有機ポリマーを包含することができる。2番目の選択的浸透層208は、分析対象物が下面の反応性層206に透過するための選択的な進入路を供給するために、任意にひとつかそれ以上の細孔、貫通、チャンネル又は窓領域を異なる範囲に(例えばレーザー剥離、フォトリソグラフィーで型取られる)含むことが可能である。2番目の選択的浸透層208は、体内で人体環境に直接曝されることがあるかもしれないので、生体適合性をもつように設計される。このことに関して特筆すべきは、もし2番目の選択的浸透層208及び/又は層状の構造202の中に全体として欠陥があって、そのために下に横たわる半導体のクラッディング106が人体又は体液環境に曝されたとしても、いくつかの実施形態においては、珪素や炭化珪素等を含む半導体の多くは同様に生体適合的であるため、それは大きな問題ではない。全ての目的において、参考として、その全てが本明細書に組み込まれる、Schulmanらの米国特許6,934,572号発明の名称「改善された外表面のために寿命が改善された埋め込み可能な酵素素材の測定システム」に説明があるように、ひとつかそれ以上の実施形態においては、生体適合性を高めるために、2番目の選択的浸透層208は少なくとも部分的にポリエチレングリコールで被覆することができる。他の生体適合性向上技術を用いることもできる。] 図2 [0036] 図3は、本発明による分析対象物センサー100の別の例示的な実施形態を示す。図3の分析対象物センサー100は、活性領域110の作動電極での電気化学的活性度を高めるために、クラッディング106の上部と1番目の選択的浸透層204の下部に直接設置された電気化学的に活性な層302を含むことができる。ひとつかそれ以上の実施形態においては、電気化学的に活性な層302は、実質上すべての過酸化水素又は1番目の選択的浸透層204を通して、層302に到達する別の検出可能な触媒反応副産物と反応(かつ電流を発生)し得る。この場合、電気化学的に活性な層302は活性領域110の作動電極として機能するとみなしてもよい。別の実施形態においては、電気化学的に活性な層302はクラッディング106と共に電流を発生し伝導するために機能するとみなしてもよいので、作動電極はクラッディング106と電気化学的に活性な層302の組み合わせで構成されるとみなしてよい。本発明のひとつかそれ以上の実施形態によれば、クラッディング106の半導体材料の電気化学的特性は、クラッディング106と電気化学的に活性な層302の間では、干渉し合う電気化学的反応は起こらないというものである。このようにして、バックグラウンド電流と腐食性反応は縮小されるか除去される。このことは、高い信号対雑音比(例:約2またはそれ以上)を有する作動電極で、安定した信号が発生することを可能にする。] 図3 [0037] 本発明のいくつかの実施形態によると、電気化学的に活性な層302は白金、金、パラジウムかつ/又はロジウムのような貴金属で構成し得る。追加または代替として、電気化学的に活性な層302は、炭素ナノチューブ又は伝導性ポリマーのような電気化学的活性度及び/又は電子の移動を高めることが知られている別の物質で構成することができる。白金は、とりわけ過酸化水素の測定のための陽極を形成する利用価値が高い材料として知られてきた。しかしながら、タンタルのような従来センサーの基板は、過酸化水素のような検出可能な反応生成物と強く反応(例:水素脆性をおこすため)する可能性がある。一般的には、欠陥無い完全な被覆を保証するために、従来のセンサーの活性領域の上部に堆積させている厚み25ミクロンの白金層は、白金の高価さ故に従来センサーのコストをかなり増加させている。] [0038] 下に横たわる基板102が上述のような不利益をこうむらないため、本発明の分析対象物センサー100には、そんなに大量の白金が必要にはならない。基板102内にクラッディング106が使われると、機能性を犠牲にすることなく、従来センサーよりも実質的により少量の白金の使用でよいかもしれないと本発明者たちは定めた。例えば、いくつかの実施形態においては、電気化学的に活性な層302はミクロン以下の白金層しか含んでいない可能性がある。別の実施形態においては、活性領域110内で電気化学的に活性な層302は、クラッディング106をほんの部分的に覆うのみかもしれない。別の実施形態においては、電気化学的に活性な材料として白金が使われた場合、かかる電気化学的に活性な材料は活性領域110の表面積の約1%から50%の間、望ましくは約5%から15%の間を覆うかもしれない。被覆量は、使われる材料の電気化学的特性により変わり得て、被覆率が低いほど高度に電気化学的に活性な種類となる可能性がより高くなる。いくつかの実施形態においては、活性領域110の表面積の約51%から100%の間の被覆レベルのものも使用され得る。] [0039] すでに述べたように、分析対象物センサー100の基板102のかかる有利な特性により、電気化学的に活性な層302で構成される作動電極は、従来の分析対象物センサーよりもより少量の材料を含むことができ、下に横たわるクラッディング106をほんの部分的に覆うのみである。このことは、多くの実施形態においては、特に層302内での不完全な及び/又は不均一な材料の分布が許容されるので、電気化学的に活性な層302に適用したり成型するために、迅速で比較的安価な技術を採用することを可能せしめる。採用可能な技術の例は、電気めっき、スパッタリング、物理蒸着法(PVD)、化学蒸着法(CVD)それに原子層堆積法(ALD)をはじめとするものを含む。] [0040] 加えて、電気化学的活性度を増進するために、半導体が採用できることが知られている。ひとつかそれ以上の実施形態においては、適切な物質(例:ホウ素)をドープさせたクラッディング106を、分析対象物センサー100の基板102内に使用できるかもしれない。いくつかの実施形態においては、上述のごとく、ドープされた半導体クラッディング106は、自分自身の上にひとつかそれ以上の作動電極を形成するかもしれないし、ドープされた半導体クラッディング106の上部に、電気化学的に活性な層を堆積させるかもしれない。] [0041] 図4に、複数の活性領域410、411を含む本発明による分析対象物センサー100の別の例示的な実施形態を示す。2つの活性領域410、411が示されてはいるが、図4の分析対象物センサー100は、2つより多い(例:3、4など)活性領域を含むことができる。活性領域410、411の両方を同時に分析対象物の濃度を示す体液環境に挿入又は埋め込むことができ、領域410、411の両方で電気信号を発生することができる。複数の活性領域410、411を含むことは余分なことのようにみえるが、これは例えば触媒が喪失したり電極の誤動作などで、ひとつかまたはそれ以上の活性領域に欠陥が生じたときでも、分析対象物センサー100が効果的に作動するようにするためのものである。特筆すべきは、示したように、活性領域410、411はお互いに全く同じ物である必要はない。例えば、領域のうちのひとつは電気化学的に活性な層302を含むが、別の一方は含まないとか、活性領域どうしが違った寸法であるようにすることができる。] 図4 [0042] 上述の説明では本発明による分析対象物センサーを分析対象物の連続的な測定と埋め込みに用いる利益を強調してきたが、発明の分析対象物センサーが体外の測定のためのプローブとして、別個に用いられ得ることは認識されるべきである。例えば、発明の分析対象物センサーを、過酸化水素又は分析対象物のある濃度レベルを示す別の物質の存在を測定するために、体液の中に浸漬又は設置することができる。更に、発明の分析対象物センサーはバイオセンサーのプローブの配列の中で用いることができる。] [0043] 分析対象物センサーを用いる別の方法として、半導体材料を含んだ基板を有する分析対象物センサーを提供することができ、かつ分析対象物センサーの少なくとも一部を腕や脚や他の体の部位のような使用者の体に挿入することができる。ひとつの方法として、分析対象物センサーは充分に小型で頑強なので、分析対象物センサーをトロカールの使用なしに使用者の体内に部分的又は完全に挿入することができる。例えば、このセンサーは血管の中に挿入できる。] [0044] 上述の説明は、この発明の例示的実施形態のみを開示したにすぎない。本発明の範囲内に入る、上記にて開示された器具又は方法を変更することは、通常の技能をもった者には容易に理解できる。例えば、いくつかの実施形態においては、基板102の導電性芯104は除去することができるし、基板102は、半導体材料の中空のクラッディング領域又は中実の半導体材料を含むことができる(例えば:基板102は半導体材料の中空又は中実の円筒であり得る)。更に、知られている任意の分析対象物検知の化学的物質を使うことができる。] [0045] 従って、本発明はその例示的実施形態と関連して開示されてきたが、下記の請求の範囲で定義されるように、別の例示的実施形態が本発明の範囲内に入り得ることは理解されなければならない。]
权利要求:
請求項1 分析対象物センサーの作動電極のために導電パスの少なくとも部分を形成する半導体材料を含む基板を含む分析対象物センサー。 請求項2 伝導性材料の芯と、半導体材料で構成されるクラッディングとを更に含む、請求項1記載の分析対象物センサー。 請求項3 クラッディングが、少なくとも1000MPaの引張強さを有する、請求項2記載の分析対象物センサー。 請求項4 伝導性材料が炭素を含む、請求項2記載の分析対象物センサー。 請求項5 基板が150ミクロン以下の直径を有する、請求項1記載の分析対象物センサー。 請求項6 基板が約75から150ミクロンの直径を有する、請求項1記載の分析対象物センサー。 請求項7 基板が約2.5mmから100mmの長さを有する、請求項1記載の分析対象物センサー。 請求項8 半導体材料が炭化珪素を含む、請求項1記載の分析対象物センサー。 請求項9 基板の上に設置され、体液環境に曝されるように採用された領域であって、薬品を含む活性領域を更に含む、請求項1記載の分析対象物センサー。 請求項10 基板の上に設置され、体液環境に曝されるように採用された領域であって、作動電極と触媒とを含む活性領域を含み、触媒が体液環境内の分析対象物を、作動電極にて電流を発生せしめる生成物に変換するために採用され得る、請求項1記載の分析対象物センサー。 請求項11 基板のクラッディングが活性領域の作動電極の少なくとも部分を形成する、請求項10記載の分析対象物センサー。 請求項12 クラッディングが活性領域の作動電極を形成する、請求項10記載の分析対象物センサー。 請求項13 活性領域内に設置され、作動電極の少なくとも部分を形成する電気化学的に活性な層を更に含む、請求項10記載の分析対象物センサー。 請求項14 電気化学的に活性な層が、白金、金、パラジウム、ロジウム、伝導性ポリマー及び炭素ナノチューブの少なくともひとつを含む、請求項13記載の分析対象物センサー。 請求項15 分析対象物の濃度レベルと相関する電流値を示すことができる触媒からの電子の移動を提供するために採用された媒介体を更に含む、請求項10記載の分析対象物センサー:。 請求項16 基板が円筒形である、請求項1記載の分析対象物センサー。 請求項17 基板が平面である、請求項1記載の分析対象物センサー。 請求項18 基板が、挿入を容易にするために採用されたランセットを形成する尖頭を含む、請求項1記載の分析対象物センサー。 請求項19 伝導性材料で構成される芯と、半導体材料から構成されるクラッディングとを含む基板を含み、クラッディングが作動電極のために導電パスの少なくとも部分を形成し、クラッディングが少なくとも1000MPaの引張強さを有する分析対象物センサー。 請求項20 半導体材料を含む基板と、基板の上に設置され、体液環境に曝されるために採用された活性領域とを含み、活性領域が、体液環境内の分析対象物を電流が発生し得るような生成物に変換するために採用される薬品を含む分析対象物センサー。 請求項21 半導体材料を含む基板を供給する工程と、基板の少なくとも一部の上に電気化学的に活性な層を施す工程と、を含む分析対象物センサーを製造する方法。 請求項22 電気化学的に活性な層が半導体材料の上に施される、請求項21記載の方法。 請求項23 半導体材料を含む基板を有する分析対象物センサーを供給する工程と、分析対象物センサーの少なくとも一部を使用者の体の中に挿入する工程と、を含む分析対象物センサーを使用する方法。 請求項24 分析対象物センサーが、少なくとも部分的にトロカールを用いずに使用者の体の中に挿入される、請求項23記載の方法。
类似技术:
公开号 | 公开日 | 专利标题 US9804114B2|2017-10-31|Sensor head for use with implantable devices JP6395055B2|2018-09-26|電気化学分析物センサ US9907500B2|2018-03-06|Lyotropic liquid crystal coated analyte monitoring device and methods of use US10390743B2|2019-08-27|Electrode system for measuring an analyte concentration under in-vivo conditions US9777307B2|2017-10-03|Heterocyclic nitrogen containing polymer coated analyte monitoring device and methods of use JP6321540B2|2018-05-09|気密密閉された筐体を備える埋め込み型分析物センサおよび該センサを製造する方法 Moussy et al.1994|A miniaturized Nafion-based glucose sensor: in vitro and in vivo evaluation in dogs Johnson et al.1992|In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue Wilson et al.2008|In-vivo electrochemistry: What can we learn about living systems? Harrison et al.1988|Characterization of perfluorosulfonic acid polymer coated enzyme electrodes and a miniaturized integrated potentiostat for glucose analysis in whole blood Sternberg et al.1989|Study and development of multilayer needle-type enzyme-based glucose microsensors US8660628B2|2014-02-25|Analyte sensors comprising blended membrane compositions and methods for making and using them US8906210B2|2014-12-09|Flux limiting membrane for intravenous amperometric biosensor US10188326B2|2019-01-29|Foldover sensors and methods for making and using them US6200772B1|2001-03-13|Modified polyurethane membrane sensors and analytical methods US4909908A|1990-03-20|Electrochemical cncentration detector method US4795542A|1989-01-03|Electrochemical concentration detector device JP5568298B2|2014-08-06|検体センサ内で電気化学反応を実行する方法 JP5950941B2|2016-07-13|分析物センサと共に使用される層状酵素組成物 US6893552B1|2005-05-17|Microsensors for glucose and insulin monitoring Ward et al.2000|Rise in background current over time in a subcutaneous glucose sensor in the rabbit: relevance to calibration and accuracy US10327678B2|2019-06-25|Analyte sensor apparatuses comprising multiple implantable sensor elements and methods for making and using them CA2695966C|2016-05-17|Combined sensor and infusion set using separated sites JP6000281B2|2016-09-28|分析物センサと共に使用される電極組成物、分析物センサ装置及び分析物センサ装置を作製する方法 Moussy et al.1994|In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high-temperature curing
同族专利:
公开号 | 公开日 US20160345882A1|2016-12-01| WO2009100082A1|2009-08-13| US9439585B2|2016-09-13| US20100298679A1|2010-11-25| EP2254458A1|2010-12-01| US10307092B2|2019-06-04|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2012-04-03| A300| Withdrawal of application because of no request for examination|Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20120403 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|